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Aim Of The Project

Given

– stereo recording of a jazz quartett (ts, p, b, dr)

– a-priori knowledge about instruments and their spec-
tral/temporal characteristics

extract following information:

– is a saxophone playing?

– if yes ⇒ prepare information for transscription
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Signal Analysis

To extract multiple F0-trajectories, a special method has been
developed.
Main problems:

– overlapping of harmonics destroys information

– instruments playing in octave interval are hard to distinguish

– time-frequency uncertainty is critical when using temporal
features as well
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Multiple-F0-Detection
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Time Domain Agents

Agents group detected F0’s to notes

– agents follow the notes until they end or change by at least
a semitone.

– a new agent is generated whenever a new possible F0 trajec-
tory starts (for one instrument)

– more than one agents per detected F0 is possible

– only agents with a minimal duration and signal energy are
used

– agents can be extended in time to catch true beginning and
ending
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Example F0 Recognition Output
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Training

Data

seconds of music spectral feat.vect. temporal feat.vect.
sax: 106 1032 117
nosax: 142 1493 346

Features

Two separate groups of feature vectors: spectral and temporal.
Spectral features can be calculated for every window, temporal
features only for every recognized note.
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Spectral Features (1) Harmonics Spectral Envelope

Amplitudes of all harmonics are compared to a model envelope
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Spectral Features (2) Harmonic Ratios Envelope

independent of F0 frequency, harmonics 2-5 amplitudes
F0 amplitude

is calculated and

compared to a model envelope, depending on F0 (very noisy
feature)
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Spectral Features - Data

MSE of harmonics
spectral envelope
and MSE of harmonics
proportions envelope
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Temporal Features

typical saxophone envelope:

typical piano/bass envelope:
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Training Algorithms

– GMM: Two models for each class (spectral features: 50
gaussians, temporal features: 10 gaussians). Spectral and
temporal likelihoods have equal weight for classification.

⇒ performed best

– SVM One spectral, one temporal model. Performed ok but
less robust than GMM

– NN One spectral, one temporal network. No well-learning
net could be found, but performance is similar to above mod-
els
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Performance Tests (GMM)

Non-Mixed Music

Evaluation of performance for one-class samples. (can be poly-
phonic for nosax-class)

correctly classified notes false alarms
saxophone only 34 7
piano only 12 5
bass only 10 0
piano & bass 139 15

overall performance 88%
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Mixtures of all instruments

– studio recording with clear, predominant saxophone playing
slow melody

is sax is nosax % correct
classified as sax 18 5 78%
classified as nosax 8 11 57%

– low quality live recording with noise

is sax is nosax % correct
classified as sax 7 8 46%
classified as nosax 22 24 52%
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Example Classification Output
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